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SUMMARY

A software tool for the 2D simulation of double-gate SOI MOSFET is developed. The developed tool is
working under MATLAB environment and is based on the numerical solution of Poisson and Schrödinger
equations self-consistently to yield the potential, carrier concentrations, and current within the device.
Compared to the already existing tools, the new tool uses finite elements method for the solution of Poisson
equation, thus, the simulation of curved boundary structures becomes feasible. Another new feature of the
tool is the use of transfer matrix method (TMM) in the solution of Schrödinger equation which was proven
in a recent published paper that it gives more accurate results than the conventional finite difference
method (FDM) when used in some regions of operation. According to the working conditions, the tool can
toggle between FDM and TMM to satisfy the highest accuracy with the largest speed of simulation. The
tool is named as FETMOSS (Finite Elements and Transfer matrix MOS Simulator). Copyright # 2006
John Wiley & Sons, Ltd.
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1. INTRODUCTION

For the design of semiconductor devices, it is required to (1) explain physical phenomena
occurring in the device, (2) predict the device response to possible variations. Three main
methodologies are used to satisfy these objectives: experimental measurements, analytical
modelling, and computer-aided design (CAD) tools. In recent years, the use of CAD tools has
received broad acceptance among the silicon technology community owing to its superior
capabilities in comparison to the other two alternatives. Experimental measurements suffer from
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excessive costs and infeasibility in some cases. On the other hand, with the ever-increasing
miniaturization of semiconductor devices through very large-scale integration (VLSI), the
complexity of the device physics with pronounced quantum-mechanical effects disables the use
of analytical modelling. Software tools based on the numerical simulation of device operation
(device simulators) enable the designer to easily perform parametric studies to explore the effect
of various parameters on the device operation far from excessive costs of experimental
investigation. Moreover, only with device simulators it is possible to accurately predict the
device performance prior fabrication, thus, the number of fabrication trials and errors are
substantially reduced and the design cost and time are much decreased. It is concluded that the
use of device simulators is indispensable alternative for efficient device design.

Several classical device simulators were developed for the simulation of conventional
MOSFETs [1–4], but a few which take care of quantum effects in nanoscale devices have been
found [5, 6]. In this work, a two dimensional (2D) quantum-mechanical device simulation tool
for nanoscale double-gate (DG) SOI MOSFETs was developed. The tool is working under
MATLAB environment and is based on the self-consistent numerical solution of Poisson and
Schrödinger equations. The Poisson equation is solved by finite elements method (FEM) [7]
using the partial differential equations (PDE) toolbox of MATLAB. On the other hand,
Schrödinger equation is solved using mode-space representation [8] which much reduces the
computational burden. The discretization of Schrödinger equation is performed by either the
finite difference method (FDM) [9] or transfer matrix method (TMM) [10]. The choice between
the two methods is according to the silicon film thickness and the operating temperature aiming
to compromise between the predefined accuracy and the minimum simulation time.

In Section 2, the algorithm of the main program is presented. In Section 3, it is explained how
to solve Poisson equation using PDE toolbox of MATLAB. The mode-space representation
along with a comparison between FDM and TMM, used for the solution of Schrödinger
equation, is given in Section 4. A group of results of the program are shown and discussed in
Section 5. Finally, conclusion is drawn in Section 6.

2. THE MAIN PROGRAM

Nanoscale semiconductor devices are described electrically on quantum-mechanical level by two
main equations: the first is Poisson equation,

r2V ¼ �
q

e
ðp� nþND �NAÞ ð1Þ

from which the electrical potential V can be determined given the quantities on the right-hand
side including hole and electron distributions p and n, and doping concentrations for donors and
acceptors ND and NA; respectively. In (1), q is electronic charge, and e is the permittivity of the
medium. The simulation tool developed is devoted to n-MOSFETs, where hole concentration is
neglected. The second equation is Schrödinger equation with effective mass approximation,

� �h2

2mn
r2c� ðqV þ EÞc ¼ 0 ð2Þ

which, given the electric potential V, determines eigenenergies E and eigenfunctions c from
which the electron concentration can be obtained. In (2), �h is the modified Planck’s constant and
mn is the effective mass of electrons. The transport of carriers in nanoscale DG devices is nearly
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ballistic [11], so, no scattering are included in the solution of (2). Equations (1) and (2) are
coupled such that the solution of any one requires the result of the other; consequently, they are
solved by iterative method until self-consistence is obtained.

The flow chart of the main program is shown in Figure 1. A rough initial guess for the
potential distribution in the device is firstly assumed. According to this potential, Schrödinger
equation is solved. The eigenenergies and eigenfunctions resulting from the solution of
Schrödinger equation are used to calculate the electron concentration in the device. Now, with

Solve schrodinger eq.

Calculate electron

concentration (n)

Numerical solver

Start

End

Is

Yes

View
Output

No

Assume initial guess for
potential

i = i 

Solve Poisson eq. for new
potential

Specify geometry, doping,

and biases

( V i  )

( V i+1 )

(Vi +1−Vi) < � ?

+1

Figure 1. Flow chart of the main program FETMOSS.
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the electron concentration is known, Poisson equation can be solved yielding a new potential
distribution. The new potential is compared to the old potential and the solution cycle is
repeated until self-consistent solution for the potential is obtained (until the difference in
potential between two successive iterations is below a certain tolerance, d).

3. SOLVING SCHRODINGER EQUATION

The Schrödinger is discretized using mode-space representation approach. This approach
greatly reduces the size of the problem and provides sufficient accuracy when compared to full
2D spatial discretization [8]. Referring to Figure 2, a model DG SOI device is divided into
vertical slices, each of width a. For each vertical slice at x ¼ x0; a 1D effective mass equation in
the z direction is written as

� �h2

2mn
z

d2cðx0; zÞ
dz2

þ ðUðx0; zÞ � EÞcðx0; zÞ ¼ 0 ð3Þ

where mn
z is the effective mass of electrons in the z direction and U ¼ �qV is the potential

energy. This equation is solved subject to zero boundary conditions at both upper and lower
interfaces assuming nearly infinite conduction band offset between Si and SiO2; (nearly infinite
potential barriers imposed by upper and lower oxides means zero eigenfunction there) to obtain
a discrete set of eigenenergies and corresponding eigenfunctions, i.e. a set of modes. For each
mode m, the distribution of eigenenergies Em(x) along the x direction resulting from the solution
of (3) is used to solve the 1D Schrödinger equation in the x direction,

� �h2

2mn
x

d2jðmÞðxÞ
dx2

� ðE � EmðxÞÞjðmÞðxÞ ¼ 0 ð4Þ

subject to open boundary conditions at source (left boundary) and drain (right boundary),
where mn

x is the effective mass of electrons in the x direction. Equation (4) is solved twice, one
assuming a plane wave is incident from the source contact, in which the solution is termed jðmÞS ;
and the other assuming a plane wave is incident from the drain contact, where the solution is
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Figure 2. A model double-gate SOI device divided into vertical slices.
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termed jðmÞD : The m-mode contribution to the total electron density is thus found from [12],

nðmÞ ¼
1

�ha

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mn

ykBT

2p3

s Z 1
0

½I�1=2ðFS � EÞjjðmÞS ðxÞj
2 þ I�1=2ðFD � EÞjjðmÞD ðxÞj

2� dE ð5Þ

where �h is the modified Planck’s constant, mn
y the effective mass of electrons in the y

direction, kB the Boltzmann constant, T the temperature, I�1=2 the Fermi–Dirac integral
of order �1=2 [13], and FS and FD are the Fermi levels at source and drain contacts,
respectively.

The total electron density within the device is found by the sum of all contributions of
individual modes weighted by the probability function jcmðx; zÞj

2 of each mode resulting from
the solution of (3), i.e.

nðx; zÞ ¼
X
m

nðmÞjcmðx; zÞj
2 ð6Þ

From a computational point of view, If we have Nz points in the z direction and Nx points in
the x direction, the full 2D discretization will lead to NzNx points and this requires the solution
of NzNx �NzNx matrices. On the other hand, using the above mode-space approach, we solve
Nz �Nz matrices in the z direction to find modes, then, we solve Nx �Nx matrices in the x
direction for each mode. The number of operations in mode space is on the order of
Nx � ðNz �NzÞ þNm � ðNx �NxÞ; where Nm is the number of modes. Therefore, if only the
first few modes are taken into account, the latter approach provides enormous savings in the
computational burden [14].

For the solution of (3) the developed program FETMOSS uses either FDM or TMM. In
both methods, the domain of solution is divided into small intervals and a certain
approximation, as explained hereinafter, is made within each interval such that the differential
equation is transformed to a system of equations which solved to yield the eigenenergies and the
distribution of the wave function. The application of the FDM and TMM for the solution of
Schrödinger equation in the transverse direction of DG SOI MOSFET is explained in the
following two subsections, respectively.

3.1. Finite difference method

The FDM subdivides the simulation domain into small discrete segments separated by nodal
points (see Figure 3). The method is based on defining unknown variable only on these nodal
points assuming linear variation in between. The derivatives in the differential equation to be
solved are thus replaced by discretized finite-difference approximations at each one of the nodes.
Using the notations: i for the index of node, and fi for the value of the function to be determined
at node i, one can write,

f 0ðziÞ ffi
fiþ1 � fi

a
¼

fi � fi�1

a
ð7Þ

and

f 00ðziÞ ffi
ððfiþ1 � fiÞ=aÞ � ððfi � fi�1Þ=aÞ

a
¼

fi�1 � 2fi þ fiþ1

a2
ð8Þ

Applying Equation (8) on the 1D Schrödinger equation given in (3), we obtain

�Zðci�1 � 2ci þ ciþ1Þ þUici ¼ Eci ð9Þ
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where Z ¼ �h2=2mna2: Equation (9) is a compact representation of N-2 equations at N-2 interior
points. The two points at the boundaries needs special treatment. At the left boundary (point 1),
Equation (9) becomes,

�Zðc0 � 2c1 þ c2Þ þU1c1 ¼ Ec1 ð10Þ

And, at the right boundary (point N), becomes,

�ZðcN�1 � 2cN þ cNþ1Þ þUNcN ¼ EcN ð11Þ

In (10) and (11), c0 and cNþ1 are the wave functions at the hypothetical points 0 and N þ 1
outside the simulation domain and should be determined from the boundary conditions. For
example, in the transverse direction of DG SOI MOSFET, the domain is surrounded by infinite
potential barriers of zero wave function, thus,

c0 ¼ cNþ1 ¼ 0 ð12Þ

The complete set of Equations (9)–(11) with condition (12) is cast in matrix form as

2ZþU1 �Z 0 . . . 0

�Z 2ZþU2 �Z . .
.

0

0 �Z . .
.

�Z 0

..

. . .
.

�Z 2ZþUN�1 �Z

0 . . . 0 �Z 2ZþUN

2
6666666666664

3
7777777777775

c1

c2

..

.

cN�1

cN

2
6666666664

3
7777777775
¼ E

c1

c2

..

.

cN�1

cN

2
6666666664

3
7777777775

ð13Þ

This eigenvalue equation is solved for N different modes. Each mode has an eigenenergy EðmÞ;
and corresponding eigenfunction values, cðmÞ1 ;cðmÞ2 ; . . . ;cðmÞN at the N nodal points.

z...

SiT

offsetCE

z2 z3 zN-1 zN=TSi...z1= 0 zi = (i-1)a

a

SiO2 Si SiO
2

Nodal Point:   1 2 3 ... N-1 N

Figure 3. Conduction band edge across the transverse direction (normal to the interface) of
a DG-nMOSFET. Using FDM, the domain is discretized through N nodal points equally

separated by distance a:
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3.2. Transfer matrix method

As mentioned previously, both FDM and TMM is based on breaking up the domain of solution
into N segments, where in each segment, the potential energy is assumed constant. However,
TMM is different from FDM in that the wave function within each segment is not assumed
linear, but, it takes as an exponential (or sinusoidal) form as deduced from the exact solution of
the wave equation in constant potential regions. Consequently, for the ith segment, the wave
function can be approximated as

ciðzÞ ¼ Ai expðaizÞ þ Bi expð�aizÞ ð14Þ

With

ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mn

z ðUi � EÞ
p

=�h ð15Þ

Applying the conditions of continuity for cðzÞ and dcðzÞ=dz between each two successive
segments, we arrive at a series of matrix equations relating Ai and Bi of any segment with those
of the preceding segment Ai�1 and Bi�1 as follows:

Ai�1

Bi�1

" #
¼M�1ðai�1; zi�1ÞMðai; zi�1Þ

Ai

Bi

" #
ð16Þ

with

Mðai; zjÞ ¼
eaizj e�aizj

aieaizj �aie�aizj

" #
ð17Þ

For bound states solution, A of the right boundary segment ðARÞ and B for the left boundary
segment ðBLÞ must vanish [15]. Thus, on eliminating the intermediate coefficients from (16), we
obtain,

AL

0

" #
¼M�1ðaL; 0Þ �P �MðaR; zNÞ

0

BR

" #
ð18Þ

where

P ¼ P1P2 . . .PN ð19Þ

And

Pi ¼Mðai; zi�1ÞM�1ðai; ziÞ ð20Þ

Applying zero eigenfunction boundary conditions, it is found that the matrix element P12

must vanish, i.e.

P12 ¼ 0 ð21Þ

This condition represents an implicit equation that determines all the eigenenergies. In
addition, for each eigenenergy, the corresponding eigenfunction is determined by calculating the
coefficients An and Bn for each segment from (16).

It was proven in previous published paper [10] that TMM is more accurate than FDM. This
superiority of TMM is more evident for higher eigenenergies than lower ones. This was
explained by the rapid change of the eigenfunctions of higher energies for which the assumption
of linear variation of c within each segment supposed by FDM is fairly poor, while exponential
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(or sinusoidal) variation assumed by TMM is more suitable. Thus, unless only the first mode is
important to be taken into account in the solution, FETMOSS uses TMM in the solution of
Schrödinger equation, otherwise, it uses FDM as it is relatively easy and its accuracy does not
differ much from TMM for the first mode solution [10].

4. SOLVING POISSON EQUATION

Poisson equation given in (1) is solved using the PDE toolbox of MATLAB [16] which solve
elliptic equations of the form,

�r � ðaruÞ þ bu ¼ f ð22Þ

where u is the unknown variable, a; b; and f can be any predefined functions of space and of the
unknown variable u. The PDE toolbox uses FEM with a Delaunay triangulation [17] of the
domain of solution. The first assumption used is that hole concentration is negligible for n-
MOSFETs. Moreover, for better convergence of the self-consistent loop, n is replaced by a new
variable, namely, the quasi-fermi potential energy for electrons Fn defined by [14],

n ¼ NCI1=2
Fn þ qV

KBT

� �
ð23Þ

where NC is normalization factor, and I1=2ðxÞ is the Fermi–Dirac integral of order 1=2 [13]
which is an integral of an exponential function of x. The advantage of introducing this variable
change is that overestimates in V will increase n through (23) which leads to the decrease of V
during the solution of (1). Better convergence comes on the expense of introducing nonlinearity
in the equation which is solved iteratively by Newton–Raphson method [18]. Now, Poisson
equation given in (1) can be written in the form,

�r �
e
eSi

� �
rV

� �
¼ qðp� nþND �NAÞ ð24Þ

to be compatible with (22). Comparing (24) with (22), and applying the above assumptions, we
can write,

a ¼ ðe=eSiÞ; b ¼ 0; f ¼ q �NCI1=2
Fn þ qV

KBT

� �
þND �NA

� �

Dirichlet boundary conditions are imposed on gate contacts, whereas at all the other
boundaries, Neumann boundary conditions are used [14]. Thus, boundary conditions are,

V ¼VG1 at the upper gate contact

V ¼VG2 at the lower gate contact

n � rV ¼ 0 otherwise

where n is the unit outward normal unit at the specified boundary.
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5. RESULTS AND DISCUSSION

A model DG SOI n-MOSFET device with nþ source/drain donor doping of 1020 cm�3 and
substrate body acceptor doping 1010 cm�3 is used. Both of the top and bottom gate contact
work functions are taken to be 4:25 eV: The top and bottom insulator relative dielectric constant
is assumed to be 3.9, while that of Si is 11.7. The length of the gate is 9:6 nm: All simulations are
performed at room temperature (T ¼ 300 K). The results drawn by FETMOSS are compared
with that calculated by nanomos 2.5 [12], which is a device simulator for DG SOI n-MOSFETs
developed at Purdue University. Nanomos uses FDM for the solution of both Poisson and
Schrödinger equations and can solve by either of five transport models. The quantum ballistic
model of nanomos is adapted for extracting results used for comparison as it matches the
assumptions made in FETMOSS.

Figure 4. The distribution of the first three subband energies along the channel of the device calculated by
both FETMOSS (solid lines) and nanomos (dotted lines).

Figure 5. Comparison of the accuracy of TMM and FDM methods for:
(a) one mode, (b) five modes included.
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In Figure 4, with the thickness of top and bottom oxides (Tox) is 1:6 nm; while that of the
silicon film (TSi) is 3:2 nm; the distribution of eigenenergy along the channel (x direction) is
shown for the first three modes with gate bias voltage VG ¼ 0:25 V and drain bias voltage
VD ¼ 0:5 V: It should be noted that a discrepancy in the eigenvalues of the two methods starts
to raise at the third mode. A comparison of the accuracy in the calculation of the eigenvalues for
of the two methods versus time is given in Figures 5(a) and (b) for one mode and five modes
included, respectively. In the latter case TMM is more accurate than FDM at the same time of
simulation.

Figure 6. The distribution of the probability functions (c2) of the first and third modes along z calculated
at the middle of the channel (x ¼ TSi=2) by both nanomos 2.5 and FETMOSS simulators.

Figure 7. The 2D electron density along the channel for the first three modes. FETMOSS results are
represented by the solid lines where nanomos results are represented by dotted lines.

T. M. ABDOLKADER ET AL.310

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Numer. Model. 2006; 19:301–314
DOI: 10.1002/jnm



On the other hand, the distribution of the probability functions (c2) along z is calculated at
the middle of the channel for the first and third modes by both simulators and depicted in Figure
6. It is evident from the figure that for the third mode, the use of TMM for the solution of the
Schrödinger equation in FETMOSS resulted in a better smoothness in the distribution. Besides,
the effect of the use of TMM can be deduced from the 2D electron density distribution along the
channel as illustrated from Figure 7, where the discrepancy of results between FETMOSS and
nanomos simulators is more evident for the third mode. The tool can give 3D distributions of
conduction band edge and the total electron density as depicted in Figures 8 and 9, respectively.

Comparison of ID–VG characteristics is depicted in Figure 10 using two drain bias voltages,
0.1 and 0:6 V for a device of Tox ¼ 1:5 nm and TSi ¼ 5 nm: The results of FETMOSS and
nanomos are nearly identical in the þve gate voltage range in which the vertical electric field is
so strong that the separation of energy levels is large and the electrons almost reside in the first
subband, thus, the effects of higher subbands is negligible. Conversely, in the �ve gate voltage

Figure 8. The 3D distribution of the conduction band edge at characteristics at VD ¼ VG ¼ 0:7 V:

Figure 9. The 3D distribution of the electron concentration at VD ¼ VG ¼ 0:7 V:
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range, small discrepancy between FETMOSS and nanomos results is due to the effectiveness of
higher subbands better accounted by TMM. Another ID–VG characteristics found at
VD ¼ 0:6 V for TSi ¼ 3 and 5 nm is drawn in Figure 11, from which, it is deduced that better
subthreshold slope is obtained for smaller thickness devices.

6. CONCLUSION

A device simulator is successfully developed for the simulation of DG SOI n-MOSFETs. The
simulator uses finite elements method for the solution of Poisson equation and either of TMM
or FDM in the solution of Schrödinger equation. The results of the developed simulator were

Figure 10. ID–VG characteristics at two different values of drain voltage 0.1 and 0:6 V:

Figure 11. ID–VG characteristics at two different silicon film thicknesses 3 and 5 nm; both at VD ¼ 0:6 V:
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compared to the quantum device simulator nanomos 2.5 of Purdue University. The use of FEM
enables the simulation of curved boundary devices which is not possible by the use of FDM.
Furthermore, the use of TMM when higher subbands come into play gives more accurate results
than FDM, or equivalently, saves the simulation time. As an example, for an accuracy level of
1%, the use of TMM results in a reduction in simulation time by a factor of nearly 18 times
when 10 subbands are taken into consideration.
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